首页 - 要闻 - IT科技 - 正文

领导者面前的难题:传统企业怎么“还在数海里浮沉”

来源:至顶网 2021-06-11 09:59:51
关注证券之星官方微博:
传统企业在模式、文化、结构与系统层面与知名科技公司完全没有任何相似之处。换句话说,这类建议太过简单粗暴,根本没有落地实践的通道。数据与分析技术的使用就是个很典型的例子,如今的人工智能(AI)与机器学习也面临着类似的难题。

(原标题:领导者面前的难题:传统企业怎么“还在数海里浮沉”)

虽然如今的数据与分析技术已经能够为决策提供坚实的信息指引与业绩优化方向,但对传统企业来说,高效运用这些技术却往往仍无比艰难。其中的问题,也许与这些企业的既有特性相关。

成熟的企业往往已经拥有几十年甚至是上百年的历史,业务部门与办事处覆盖世界各地,内部雇员多达数千。这类企业的信息系统也已经渗透至每一个角度,在不同的平台上实现不同目的。他们的业务流程与运营体系极为复杂,但往往都面对着两大共通的痛点——牢固而僵化的决策结构,以及根深蒂固的企业文化。

当然,传统企业的领导者与高管团队也听过不少建议,例如应该像亚马逊、Netflix或者Spotify那样灵活对待自己的业务。没错,这些伟大的公司已经建立起极为成功、令人钦佩的业务,而其模式与解决方案普遍都有着电子商务公司的特点,部分公司甚至在创立之初就考虑到了数据驱动需求。很明显,这种模式并不适合一家拥有百年历史的全球制造业公司。

根据观察,不少高管面对这类建议时往往相当无奈——传统企业在模式、文化、结构与系统层面与知名科技公司完全没有任何相似之处。换句话说,这类建议太过简单粗暴,根本没有落地实践的通道。数据与分析技术的使用就是个很典型的例子,如今的人工智能(AI)与机器学习也面临着类似的难题。

数据文化冲突

成熟企业的领导者需要首先理解数据文化的真正含义:这其实是一种期望、支持并鼓励员工们使用数据制定决策并优化业务流程的文化。面对任何新建议,我们都应该问一句“有数据和分析结论作为支持吗?”人们还必须有能力访问到自己需要的数据,企业还应鼓励大家展示自己的分析结果,包括其中不那么中听、甚至可能引发抵触的结果。

硅谷的不少初创公司就是在这样的前提与考量下建立的。然而,传统企业的组织结构与系统早就已经引入了某种形式的数据分析,如今只是需要通过AI预测分析进一步做出业务优化。我认识的一位高管就来自某家顶级数据驱动型初创公司,现在在一家大型消费品公司领导数据分析。回顾当初创业时曾经理所当然的商业实践、决策流程与系统方案,他只能用“文化冲突”来形容如今的新环境。

成熟的组织在数据使用方面往往呈现出支离破碎、孤立且狭隘的特性,信息共享也面临着根深蒂固的障碍。此外还有不少人为因素,数据可访问性与分析的推广将不可避免地提高业务透明度,给传统势力造成挑战并产生大量不受待见的洞察结论。如此一来,业务部门负责人等中层管理者越是积极推进数据驱动,越是会受到感觉自己受到挑战的高管们的打压。

例如,我的一位同事就讲述过为一家金融服务分析,确定需要关闭哪些零售分部的经历。在提出建议时,零售业务负责人反驳道“我是负责零售分部工作的,我不同意这些分析结论,我们也不会关闭任何分部。”

在另一家公司,分析主管也展示了如何优化广告媒体采购决策以提高宣传效率,并建议具体工作应该由分析部门接手。广告业务负责人对此当然反应消极,还造成了极为严重的信任乃至协作关系撕裂。

提升绩效

尽管存在种种挑战,但也有不少传统企业成功吸纳了数据与分析技术这波深厚“内力”。

与其粗暴复制硅谷的方法,传统企业更应该将数据与分析融合到自己的业务当中。下面来看几点建议:

  • 适应高透明度。过去只存在于单一部门的数据与分析结果,如今需要在整个领导团队中广泛共享。这种透明度将与业务绩效直接相关,只需要注意对人事决策等内容保密即可。
  • 加强问责制。随着透明度的提高,问责制也将随之而来。单一部门或事业部不仅要对特定战略或产品的效果做出定性反馈,还需要在方法论上使用可靠的数据与分析运行这种定性判断。
  • 接受不中听的答案。数据分析经常会挑战固有假设,把领导者们从未想过、接触过的东西摆在他们面前——例如实际表现不及想象,或者现实数据与传统经验相互矛盾。

要想利用AI与机器学习技术不断提高业务绩效,建立数据文化可谓势在必行。与其强迫自己模仿科技初创企业,传统公司不妨专注于期望、支持并鼓励内部员工,着力在文化、决策与组织层面逐步引入数据与分析技术。

微信
扫描二维码
关注
证券之星微信
APP下载
下载证券之星
郑重声明:以上内容与证券之星立场无关。证券之星发布此内容的目的在于传播更多信息,证券之星对其观点、判断保持中立,不保证该内容(包括但不限于文字、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关内容不对各位读者构成任何投资建议,据此操作,风险自担。股市有风险,投资需谨慎。如对该内容存在异议,或发现违法及不良信息,请发送邮件至jubao@stockstar.com,我们将安排核实处理。如该文标记为算法生成,算法公示请见 网信算备310104345710301240019号。
网站导航 | 公司简介 | 法律声明 | 诚聘英才 | 征稿启事 | 联系我们 | 广告服务 | 举报专区
欢迎访问证券之星!请点此与我们联系 版权所有: Copyright © 1996-